Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Rozhodovací stromy
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
NFK
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

NFK
umime.to/NFK

Nastavení cvičení


Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/NFK

Rozhodovací stromy

Rozhodovací strom (angl. decision tree) zachycuje proces rozhodování na základě postupně kladených otázek (podmínek). Rozhodování podle rozhodovacích stromů si můžete procvičit ve cvičení Deaktivace bomby: rozhodovací stromy. Rozhodovací stromy se využívají ve strojovém učení jako jeden z modelů, podobně jako třeba lineární modely nebo neuronové sítě.

Určení predikce podle rozhodovacího stromu

Proces rozhodování lze zachytit diagramem ve tvaru stromu (typ grafu), jehož vnitřní uzly obsahují podmínky a listy (koncové uzly, které se již nevětví) obsahují predikce. První podmínka je v kořenovém uzlu a dále postupujeme po hranách (šipkách) do levého nebo pravého podstromu podle toho, zda podmínka pro daný příklad platí, nebo neplatí. Cestu z kořene do listu lze interpretovat jako složenou podmínku spojenou s jedním klasifikačním pravidlem. Nejpravější větev následujícího stromu zachycuje pravidlo: „Pokud má příšerka alespoň 4 ruce a alespoň 5 očí, tak je zlá.“.

Rozhodovací stromy lze využít na řešení klasifikačních i regresních úloh. Klasifikační rozhodovací strom má v listech predikované kategorie, regresní klasifikační strom predikované číselné hodnoty.

Učení rozhodovacích stromů

V případě klasifikačních úloh hledáme takový rozhodovací strom, který maximalizuje správnost (počet správně klasifikovaných případů, angl. accuracy) na zadané trénovací množině příkladů. Možných stromů je příliš mnoho na to, abychom mohli vyzkoušet všechny, proto strom tvoříme postupným přidáváním uzlů s podmínkami. (Tento přístup, kdy děláme lokálně optimální rozhodnutí, která však negarantují celkově optimální výsledek, se označuje jako hladový algoritmus.)

Začínáme s celým datasetem příkladů a hledáme podmínku, která rozdělí příklady na dvě co nejhomogenější skupiny. (Ideální podmínka by platila pro všechny příklady jedné kategorie a neplatila pro všechny příklady druhé kategorie – pak bychom totiž dosáhli nejvyšší možné správnosti predikcí.) Míru nehomogenity lze kvantifikovat například pomocí entropie nebo Gini indexu, což jsou podobné funkce, které jsou nulové pro zcela homogenní rozdělení a nejvyšší hodnotu mají pro rovnoměrné rozdělení (půlka příkladů z první kategorie, půlka příkladů z druhé kategorie).

Vybraná nejlepší podmínka se stává kořenem stromu. Stejný proces pak opakujeme pro každý podstrom, dokud dochází k zvyšování homogenity, dokud máme v uzlu dostatek příkladů a/nebo dokud strom není příliš hluboký. Predikce potom odpovídá nejčastější kategorii příkladů, které prošly do tohoto listu. (V případě regresních rozhodovacích stromů by to byla průměrná hodnota příkladů.)

Výhody a nevýhody rozhodovacích stromů

Rozhodovací stromy jsou jednoduché a velmi dobře interpretovatelné. Stromy lze přirozeně vizualizovat a pro jednotlivé predikce lze generovat jasná vysvětlení – složené podmínky dané cestou z kořene do listu. Tyto podmínky jsou navíc nad původními atributy, neboť rozhodovací stromy nevyžadují normalizaci atributů (oproti např. lineárním modelům). Rozhodovací stromy umožňují zachytit nelineární interakce mezi atributy, naopak však nedokáží efektivně zachytit lineární vztahy (jen přibližně pomocí velkého množství podmínek).

Rozhodovací stromy jsou náchylné k přeučení, čemuž lze předejít omezením hloubky a prořezáváním větví, které příliš nepřispívají k celkové správnosti predikcí. I při těchto opatřeních jsou však stromy nestabilní – malá změna dat může výrazně ovlivnit výsledný strom. Nestabilní jsou i jednotlivé predikce – malá změna jednoho atributu může způsobit skokovou změnu predikované hodnoty.

Rozšíření rozhodovacích stromů

Složitější modely kombinují více rozhodovacích stromů do jednoho modelu, aby zvýšili kvalitu predikcí. Náhodný les (angl. random forest) je agregace velkého množství rozhodovacích stromů naučených na náhodných podmnožinách trénovacích dat, jejichž predikce se průměrují. To zvyšuje stabilitu predikcí a snižuje náchylnost k přeučení. Nevýhodou je výrazně horší interpretovatelnost.

Zavřít

Rozhodovací stromy (lehké)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence