Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Princip strojového učení
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
NC2
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

NC2
umime.to/NC2

Nastavení cvičení


Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/NC2

Princip strojového učení

Umělá inteligence často využívá učení z dat, tzv. strojové učení. Vstupem strojového učení je velké množství dat (dataset), výstupem je naučený model pro řešení požadovaného úkolu. Máme-li dostatek dat popisujících vzhled a chování příšerek, můžeme naučit model, který bude pro nové příšerky odhadovat, zda jsou hodné, na základě jejich vzhledu.

Klíčovou ingrediencí pro strojové učení je velké množství dat. Jednotlivé příklady jsou typicky poměrně jednoduché (např. jedna fotka), ale je jich hodně (někdy i miliony). Aby byl model užitečný, nestačí, aby si zapamatoval trénovací data (memorizace), musí být schopen určovat správný výstup i pro příklady nové (zobecňování, generalizace).

Příkladem modelu je rozhodovací strom (na obrázku výše) nebo neuronová síť (model volně inspirovaný sítí neuronů v mozku). Strojové učení může v závislosti na množství dat trvat vteřiny i celé dny, pro urychlení se proto někdy využívají grafické procesory (GPU, graphics processing unit) a tenzorové procesory (TPU, tensor processing unit).

Strojové učení lze vnímat jako alternativu ke klasickému programování, při kterém programátor zapisuje posloupnost přesných instrukcí (např. if-then pravidla nebo heuristika na základě zkušenosti). Strojové učení bude vhodným přístupem zejména tehdy, když není jasné, jak by takový klasický program měl vypadat a přitom lze sehnat rozsáhlé množství příkladů (např. detekce spamu). Strojové učení spíše nebude vhodným přístupem pro kritická rozhodnutí, kde není tolerovatelná žádná chyba a potřebujeme vysokou předvídatelnost a transparentnost chování (např. bankovní převod).

Aplikace strojového učení (příklady)

  • detekce spamu
  • diagnóza nemoci
  • rozpoznání hlasu
  • překlad textů
  • doporučování filmů
  • řízení auta
  • generování obrázků podle popisu
Zavřít

Princip strojového učení (střední)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence