Princip strojového učení

NC3
Zkopírovat krátkou adresu (umime.to/NC3)
Ukázat QR kód

umime.to/NC3


Stáhnout QR kód
Ukázat/skrýt shrnutí

Umělá inteligence často využívá učení z dat, tzv. strojové učení. Vstupem strojového učení je velké množství dat (dataset), výstupem je naučený model pro řešení požadovaného úkolu. Máme-li dostatek dat popisujících vzhled a chování příšerek, můžeme naučit model, který bude pro nové příšerky odhadovat, zda jsou hodné, na základě jejich vzhledu.

Klíčovou ingrediencí pro strojové učení je velké množství dat. Jednotlivé příklady jsou typicky poměrně jednoduché (např. jedna fotka), ale je jich hodně (někdy i miliony). Aby byl model užitečný, nestačí, aby si zapamatoval trénovací data (memorizace), musí být schopen určovat správný výstup i pro příklady nové (zobecňování, generalizace).

Příkladem modelu je rozhodovací strom (na obrázku výše) nebo neuronová síť (model volně inspirovaný sítí neuronů v mozku). Strojové učení může v závislosti na množství dat trvat vteřiny i celé dny, pro urychlení se proto někdy využívají grafické procesory (GPU, graphics processing unit) a tenzorové procesory (TPU, tensor processing unit).

Strojové učení lze vnímat jako alternativu ke klasickému programování, při kterém programátor zapisuje posloupnost přesných instrukcí (např. if-then pravidla nebo heuristika na základě zkušenosti). Strojové učení bude vhodným přístupem zejména tehdy, když není jasné, jak by takový klasický program měl vypadat a přitom lze sehnat rozsáhlé množství příkladů (např. detekce spamu). Strojové učení spíše nebude vhodným přístupem pro kritická rozhodnutí, kde není tolerovatelná žádná chyba a potřebujeme vysokou předvídatelnost a transparentnost chování (např. bankovní převod).

Aplikace strojového učení (příklady)

  • detekce spamu
  • diagnóza nemoci
  • rozpoznání hlasu
  • překlad textů
  • doporučování filmů
  • řízení auta
  • generování obrázků podle popisu
Souhrn mi pomohl
Souhrn mi nepomohl
Souhrn je skryt.

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Princip strojového učení  
Zobrazit souhrn tématu


Krok po kroku

Doplňování jednotlivých kroků v rozsáhlejším postupu.


Princip strojového učení  
Zobrazit souhrn tématu


Porozumění

Čtení textů, odpovídání na otázky testující porozumění textu.


Princip strojového učení



Doplňování textu

Krátké texty, do kterých doplňujete na vybraná místa správnou variantu ze dvou možností.


Princip strojového učení  
Zobrazit souhrn tématu


NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence